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n Lunar Underactuated Arm (LUnA) Project Overview

Explored feasibility of maturing minimal/underactuated robotic arm technology

LUNnA is a 4 Degrees-of-Freedom (DOF) arm with a single actuator at the shoulder.
Movement at each joint controlled by a brake subsystem.

Effort bridged Technology Readiness Level (TRL) 4 (Breadboard validation in a
laboratory environment) to TRL 6 (Prototype demonstrated in a relevant environment).

Design is scalable up to 7 DOF with a single actuator
Use of a single actuator at the shoulder -- benefits:
e Better thermal and radiation protection.
e Reduced mass, power, and recurring cost.
Payload deployment and retrieval use case was selected to demonstrate technology.
Relevant environments included
e Demonstration under thermal/vacuum conditions.
e Demonstration at the Colorado School of Mines Lunar Testbed Facility to validate dust
mitigation techniques.
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u Minimal Actuation Concept

Typical robotic arms are fully actuated, i.e., an actuator
exists at each joint.

An underactuated arm has less actuators than joints.
LUNnA is a minimally actuated arm; it has a single actuator
at the base and a series of drive tapes and brakes that
control the joints.

Torque from the actuator is transmitted to the four joints
of the arm (in a Yaw-Pitch-Pitch-Pitch configuration)
equally via a drivetrain system.

Joints move one at a time, depending on which brake is
unlocked.

Single actuator at shoulder allows for better thermal and
radiation protection of sensitive avionics, and potential
mass and cost savings.
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=3 Demonstration Campaign

« Selected use case for demonstrations was Pick-and-Place.
« 2kg and 4kg payloads placed at various locations from arm base.
« This allowed the arm to navigate to them for the pickup and move operation.
« Linux laptop running control software was located alongside and connected via the
arms bulkhead connection.
« Three demonstrations:
1. Prototype demonstrated in laboratory environment — TRL 5.
2. Prototype demonstrated in relevant environment (Thermal/Vacuum) — TRL 6.
3. Prototype demonstrated in relevant environment (Lunar Dust) — TRL 6.

Extend Arm Retract Arm
(Deploy Payload) Reteio Arm (Retrieve Payload)

0.550m
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Demonstration 1: Laboratory Environment

« Demonstration of use case in a laboratory environment

« Acceptance criteria for this demonstration were:
 LUNA arm provides all telemetry without faults and at 100Hz or better.
« The payload was successfully engaged and carried throughout test motions and deployed on

the desired target.
* The test scripts returned successfully without faults.
« All test data was collected without interruption and stored for data reduction.

L’*A SPACE ROBOTICS
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Demonstration 2: Thermal / Vacuum (TRL6)

« Demonstration of use case in a relevant , | 024-01-11 07 ¢

= MAXAR

environment (-40C to +65C).

* Functional checkout at 20C under vacuum

« The next demonstration setpoint was at -40C,
followed by the last setpoint of +65C.

* Quick functional check performed from ambient
to cold at 10C, -10C, and -30C and involved
moving each joint 4° forward and back to verify
arm function.

» Also performed from the cold to hot at +30C,
+40C, +50C, and +60C.

« Acceptance criteria for this demonstration were .
the same as Demo 1 and evaluated at the three
operational temperature setpoints. S peed 3 OX |

- Drive train mechanics, trajectory algorithms, and Tem p = + 65C 4 ..’?‘ ‘

tensioning performed well at ambient and cold. s - ,, N
; Channel K l / i ; b e )
» There were challenges at high temperatures Q e - | _' i\ S
holding the pretension torques and handling the S )
same movements (i.e., picking up the payload A
and manipulating it). &

LUNA D2 +65C (30x).mp4
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Demonstration 3: Lunar Regolith Testbed (TRLO6)

« Demonstration of use case in a relevant
environment.

« Same operational acceptance criteria as
Demos 1 and 2.

* Conducted at Lunar Testbed Facility at
Colorado School of Mines.

« Demo 3Ainvolved static dirty test where
regolith was applied to the arm prior to
movement.

* Demo 3B involved dynamic dirty test where
regolith actively applied to the arm throughout
movement.

* Simulant used was CSM-LHT-1 Lunar
Highlands Type simulant , mean particle
diameter of 122.0 £ 2.1 pm.

* Meets the intent of NASA-STD-1008

* No dust intrusion found in the actuator and arm
upon disassembly, thus validating the dust
mitigation design.

LUNnA D3 Test B Dual View (30x).mp4
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Scooping Operations Lunar Regolith Testbed

*  Opportunity to attach functional copy of scoop
planned for use on upcoming SAMPLR mission.

+ Able to demonstrate scooping (video) and
simple trench digging (image below).

* Sieving was problematic, as LUnA was not
designed to impart lateral motion.

* Information gathered during this activity will be
of benefit to SAMPLR mission planning.

/253 1'

Speed = 30x

LUNA D3 Test C and D Dual View (30x).mp4
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LUnA D3 Test C and D Dual View (30x).mp4
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u Conclusions

« Overarching philosophy: development of LUNA prototype informs design of future flight article.
« Limitation of this technology is that only one joint at a time can be moved
« Extra time is required to lock and unlock the joints between moves.
« Unable to have a straight-line trajectory like a fully actuated arm.
* Analysis was conducted on potential “next steps” in improvements to the initial design that
would improve operational effectivity in a flight-qualified robotic arm, including:
* Optimizing the design for better mass reduction.
* Increasing the degrees of freedom of the arm.
* Improvements in the drivetrain and structure (e.g., designing for ease of assembly,
selection of alternative components, etc.).
* Improvements to the control system.
« Of particular interest is optimization of the braking system.
* Future Use cases:
« Scooping and trenching
» Deployable structures
 Cranes
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u Prototype Capabilities

Parameter

Specification

Degrees of freedom

Total Length
Actuators
Total mass

Structural Material

4 (Yaw-Pitch-Pitch-Pitch)

1.1m
1 (Maxar Z17)
17kg

Aluminum

Joint Torque
Capability

Joint Range of Motion

Tip Force

Tip Accuracy

Tip Repeatability
Tip Velocity
Operational Power

Idle Power

67Nm

+161.8° at all joints (hard stop limited)

>49N at 0.5m reach

.015m at 0.5m reach

.007m at 0.5m reach

>0.026 m/s

28W Operational, 29.5W Peak
ow
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Parameter

Specification

Arm Computer

Motor Control Board

Sensing

Operating Voltage
Current Limit

Heaters

Interface

Xiphos Q7
Elmo Gold Bee MCB

- Actuator output position
- Motor position

- Actuator output torque

- Joint position

- Joint temperature

32V Max
1.5A

-Motor Case
-Actuator Housing
-All Joint Brakes

Bulkhead Micro-D Connectors at Base

Operational
Temperature Range

Vacuum

Lunar Regolith Exposure

13

-40°C to +65°C

10 Torr

Mitigations in design to prevent intrusion
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