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Lunar Underactuated Arm (LUnA) Project Overview
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• Explored feasibility of maturing minimal/underactuated robotic arm technology

• LUnA is a 4 Degrees-of-Freedom (DOF) arm with a single actuator at the shoulder.

• Movement at each joint controlled by a brake subsystem.

• Effort bridged Technology Readiness Level (TRL) 4 (Breadboard validation in a

laboratory environment) to TRL 6 (Prototype demonstrated in a relevant environment).

• Design is scalable up to 7 DOF with a single actuator

• Use of a single actuator at the shoulder -- benefits:

• Better thermal and radiation protection.

• Reduced mass, power, and recurring cost.

• Payload deployment and retrieval use case was selected to demonstrate technology.

• Relevant environments included
• Demonstration under thermal/vacuum conditions.

• Demonstration at the Colorado School of Mines Lunar Testbed Facility to validate dust

mitigation techniques.
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Minimal Actuation Concept

• Typical robotic arms are fully actuated, i.e., an actuator

exists at each joint.

• An underactuated arm has less actuators than joints.

• LUnA is a minimally actuated arm; it has a single actuator

at the base and a series of drive tapes and brakes that

control the joints.

• Torque from the actuator is transmitted to the four joints

of the arm (in a Yaw-Pitch-Pitch-Pitch configuration)

equally via a drivetrain system.

• Joints move one at a time, depending on which brake is

unlocked.

• Single actuator at shoulder allows for better thermal and

radiation protection of sensitive avionics, and potential

mass and cost savings.
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Demonstration Campaign

• Selected use case for demonstrations was Pick-and-Place.

• 2kg and 4kg payloads placed at various locations from arm base.

• This allowed the arm to navigate to them for the pickup and move operation. 

• Linux laptop running control software was located alongside and connected via the 

arms bulkhead connection.

• Three demonstrations:

1. Prototype demonstrated in laboratory environment – TRL 5.

2. Prototype demonstrated in relevant environment (Thermal/Vacuum) – TRL 6.

3. Prototype demonstrated in relevant environment (Lunar Dust) – TRL 6.
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Demonstration 1: Laboratory Environment

• Demonstration of use case in a laboratory environment

• Acceptance criteria for this demonstration were:
• LUnA arm provides all telemetry without faults and at 100Hz or better.

• The payload was successfully engaged and carried throughout test motions and deployed on

the desired target.

• The test scripts returned successfully without faults.

• All test data was collected without interruption and stored for data reduction.
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Demonstration 2: Thermal / Vacuum (TRL6)

• Demonstration of use case in a relevant

environment (-40C to +65C).

• Functional checkout at 20C under vacuum

• The next demonstration setpoint was at -40C,

followed by the last setpoint of +65C.

• Quick functional check performed from ambient

to cold at 10C, -10C, and -30C and involved

moving each joint 4o forward and back to verify

arm function.

• Also performed from the cold to hot at +30C,

+40C, +50C, and +60C.

• Acceptance criteria for this demonstration were

the same as Demo 1 and evaluated at the three

operational temperature setpoints.

• Drive train mechanics, trajectory algorithms, and

tensioning performed well at ambient and cold.

• There were challenges at high temperatures

holding the pretension torques and handling the

same movements (i.e., picking up the payload

and manipulating it).
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Demonstration 3: Lunar Regolith Testbed (TRL6)

• Demonstration of use case in a relevant

environment.

• Same operational acceptance criteria as

Demos 1 and 2.

• Conducted at Lunar Testbed Facility at

Colorado School of Mines.

• Demo 3A involved static dirty test where

regolith was applied to the arm prior to

movement.

• Demo 3B involved dynamic dirty test where

regolith actively applied to the arm throughout

movement.

• Simulant used was CSM-LHT-1 Lunar

Highlands Type simulant , mean particle

diameter of 122.0 ± 2.1 µm.

• Meets the intent of NASA-STD-1008

• No dust intrusion found in the actuator and arm

upon disassembly, thus validating the dust

mitigation design.
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Scooping Operations Lunar Regolith Testbed

• Opportunity to attach functional copy of scoop

planned for use on upcoming SAMPLR mission.

• Able to demonstrate scooping (video) and

simple trench digging (image below).

• Sieving was problematic, as LUnA was not

designed to impart lateral motion.

• Information gathered during this activity will be

of benefit to SAMPLR mission planning.
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Conclusions

• Overarching philosophy: development of LUnA prototype informs design of future flight article.

• Limitation of this technology is that only one joint at a time can be moved

• Extra time is required to lock and unlock the joints between moves. 

• Unable to have a straight-line trajectory like a fully actuated arm.

• Analysis was conducted on potential “next steps” in improvements to the initial design that 

would improve operational effectivity in a flight-qualified robotic arm, including:

• Optimizing the design for better mass reduction. 

• Increasing the degrees of freedom of the arm.

• Improvements in the drivetrain and structure (e.g., designing for ease of assembly, 

selection of alternative components, etc.).

• Improvements to the control system.

• Of particular interest is optimization of the braking system.

• Future Use cases:

• Scooping and trenching

• Deployable structures

• Cranes
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Prototype Capabilities

Parameter Specification

Electrical

Arm Computer Xiphos Q7

Motor Control Board Elmo Gold Bee MCB

Sensing - Actuator output position

- Motor position

- Actuator output torque

- Joint position

- Joint temperature 

Operating Voltage 32V Max

Current Limit 1.5A

Heaters -Motor Case

-Actuator Housing

-All Joint Brakes

Interface Bulkhead Micro-D Connectors at Base

Environmental

Operational 

Temperature Range

-40°C to +65°C

Vacuum 10-6 Torr

Lunar Regolith Exposure Mitigations in design to prevent intrusion

Parameter Specification

Physical Attributes

Degrees of freedom 4 (Yaw-Pitch-Pitch-Pitch)

Total Length 1.1m

Actuators 1 (Maxar Z17)

Total mass 17kg

Structural Material Aluminum

Performance Characteristics

Joint Torque 

Capability

67Nm

Joint Range of Motion ±161.8° at all joints (hard stop limited)

Tip Force >49N at 0.5m reach

Tip Accuracy .015m at 0.5m reach

Tip Repeatability .007m at 0.5m reach

Tip Velocity >0.026 m/s

Operational Power 28W Operational, 29.5W Peak

Idle Power 9W
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